Preprint.

RECURSIVE SELF-AGGREGATION UNLOCKS
DEEP THINKING IN LARGE LANGUAGE MODELS

Siddarth Venkatraman®* Vineet Jain“ 1 Sarthak Mittal* 1> Vedant Shah!?
Johan Obando-Ceron!? Yoshua Bengio'*>*’ Brian Bartoldson® Bhavya Kailkhura®
Guillaume Lajoie'>” Glen Berseth!*’ Nikolay Malkin®® Moksh Jain!?

“Equal contribution "Mila — Québec Al Institute >Université de Montréal ~ 3McGill University
“LawZero SLLNL “University of Edinburgh ’CIFAR AI Chair 8CIFAR Fellow

siddarth.venkatraman, jain.vineet,mittalsa,vedant.shah,

{ johan.ceron,yoshua.bengio,guillaume.lajoie,glen.berseth, }@mila.quebec
moksh. jain

{bartoldson1,kailkhural}@llnl.gov, nmalkin@ed.ac.uk

ABSTRACT

Test-time scaling methods improve the capabilities of Large Language Models
(LLMs) by increasing the amount of compute used during inference to make a
prediction. Inference-time compute can be scaled in parallel by choosing among
multiple independent solutions or sequentially through self-refinement. We pro-
pose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by
evolutionary methods that combines the benefits of both parallel and sequential
scaling. Each step of RSA refines a population of candidate reasoning chains
through aggregation of subsets to yield a population of improved solutions, which
are then used as the candidate pool for the next iteration. RSA exploits the rich
information embedded in the reasoning chains — not just the final answers — and
enables bootstrapping from partially correct intermediate steps within different
chains of thought. Empirically, RSA delivers substantial performance gains with
increasing compute budgets across diverse tasks, model families and sizes. No-
tably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance
with larger reasoning models, including DeepSeek-R1 and 03-mini (high), while
outperforming purely parallel and sequential scaling strategies across AIME-25,
HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further
demonstrate that training the model to combine solutions via a novel aggregation-
aware reinforcement learning approach yields significant performance gains. Code
is available here.

1 INTRODUCTION

Large language models (LLMs) demonstrate consistent improvements in performance with increasing
training compute (Kaplan et al., 2020). Complementarily, test-time scaling strategies, i.e., those
that increase compute at inference without altering model parameters, can deliver significant gains
in performance (Snell et al., 2025; Jaech et al., 2024). Test-time scaling mechanisms for LLMs
can broadly be characterised into two types (§2): those that use deeper model rollouts to iteratively
improve solutions (e.g., Muennighoff et al., 2025; Zhang et al., 2025a) and those that branch to
explore multiple solution paths, then filter or recombine them (e.g., Wang et al., 2023; Weng et al.,
2023). We refer to these types as sequential and parallel scaling; some hybrid methods combine the
strengths of both approaches (e.g., Yao et al., 2023; Meyerson et al., 2024; Lee et al., 2025).

However, a universal and effective test-time-scaling method that allows reuse of promising fragments
from multiple candidate solutions is lacking. Self-refinement methods — the quintessential form
of sequential scaling — can improve a candidate solution by reusing its own correct parts, but do
not leverage the information contained within other candidates. Similarly, parallel scaling methods
such as verifier-guided Best-of-N selection can identify the best candidate from a batch, but do not

https://github.com/HyperPotatoNeo/RSA

Preprint.

80 HMMT-25 Reasoning Gym Games LiveCodeBench-vé
0 675 69.9 690 706 Qwen3 Instruct (4B) +7.1
Qwen3 Instruct (30B) +7.1
60 55.5 548 539 GPT-OSS Medium (20B) +5.6
504 476 0 20 40 60 80 100
3 4.7 Pass@1
2 404
& AIME-25
30 4 272
Nemotron Nano (9B) +32.1
201 Qwen3 Instruct (4B) +29.9
10 4 Qwen3 Instruct (30B) +27.2
Qwen3 Thinking (4B) +19.4
o
R o & @ & o & & GPT-0SS Medium (208) +22.4
O ¥ & o0 & ¢ & O 9
Q& o & Q& & o & Q& I T T T T |
S K& X & K& F o« 0 20 40 60 80 100
F o o T .
Moo x Ko x ass!
& 5 & 4 B Base + RSA
Ojﬁ ?f 0~“ ase ase

Figure 1: Recursive Self-Aggregation (RSA, §3) substantially improves Pass@1 across tasks
and model architectures. RSA enables the much smaller Qwen3-4B-Instruct-2507 to match the
performance of larger reasoning models such as DeepSeek-R1 and 03-mini (high). These gains are
further amplified through our proposed aggregation-aware RL framework (§4).

recombine candidates to produce improved solutions. Existing hybrid approaches fail to solve this
problem in a general way, often making strong assumptions on the form of reasoning chains (e.g.,
Meyerson et al., 2024; Hemberg et al., 2024) or requiring external verifiers (e.g., Novikov et al., 2025;
Lee et al., 2025). Our work fills this gap in three ways, described in the following paragraphs.

Self-aggregation. We study a general way to improve LLM reasoning chains through self-
aggregation: providing the model with the query and a set of candidate solutions and prompting it to
produce an improved solution. Such an approach, which relies on the implicit verification abilities of
the model (Weng et al., 2023), can use the rich information contained within the reasoning chains:
for example, a reasoning trace that results in an incorrect answer to a problem can have correct
intermediate steps that can be reused in the aggregated solution (§E). Such aggregation methods are
explored in multiple concurrent works (e.g., Li et al., 2025; Wang et al., 2025; Zhao et al., 2025) and
are promising directions for test-time scaling.

Recursive self-aggregation. While self-aggregation can be used as a one-time procedure to combine
candidate solutions, our proposed algorithm, Recursive Self-Aggregation (RSA, §3), goes further:
integrating aggregation steps into a self-improvement loop motivated by evolutionary algorithms. RSA
maintains a population of candidate solutions and iteratively recombines subsets of the population to
produce a new population of improved solutions (Fig. 3). This sequential refinement enables deeper
reasoning by allowing the model to revisit its solutions and make multiple attempts at correcting
errors. RSA maintains a candidate population larger than the aggregation set size and can therefore
jointly consider significantly more proposals than single-step aggregation, which is constrained by
the model’s effective context length. Unlike other evolutionary methods, RSA requires no external
verification and can be seamlessly integrated into any LLM inference pipeline to improve reasoning.

Aggregation-aware RL. During post-training, LLMs are trained with reinforcement learning (RL)
to improve their reasoning ability (Jaech et al., 2024; Guo et al., 2025). RL training does not account
for test-time scaling, which in this case is the task of aggregating multiple reasoning chains. In fact,
we observe that standard RL fine-tuning can even degrade performance relative to the base model
when combined with test-time aggregation (§5.4). To address this, we propose an aggregation-aware
RL approach using a simple data-augmentation strategy to train LLMs to aggregate solutions (§4).

We perform extensive experiments to demonstrate the effectiveness of RSA across diverse tasks,
such as AIME-25, HMMT-25, LiveCodeBench, Reasoning Gym, and SuperGPQA with various base
models (§5). RSA bridges the gap between the lightweight Qwen3-4B-Instruct-2507 and much
larger reasoning models like DeepSeek-R1 and 03-mini (high) (Fig. 1). Our results also show
that aggregation-aware RL significantly improves performance with RSA compared to naive RL
training (§5.4). We rigorously analyze the factors driving RSA performance and provide practical
recommendations to enable deeper test-time thinking under compute constraints (§5.3).

Preprint.

)

73) h
Prompt — @ (To)—fEeme (7] Prompt— %—’H(U—W —> see —'F)\‘
—/
S =y
Parallel Scaling Sequential Scaling
1 T-1
\Té) ‘Ts ‘\Ts()J
— [l o] Lo
) / Yawr—ame\)
}z_l(l)‘ 2)‘ ‘j—l(T_IJ

Hybrid Scallng

Figure 2: Overview of test-time scaling control flows. Parallel methods generate multiple candidates
and select using a verification mechanism. Sequential methods iteratively refines a chain, correcting
previous mistakes. Hybrid methods combine parallel branching with sequential refinement.

2 A TAXONOMY OF TEST-TIME SCALING METHODS

Test-time scaling refers to methods that obtain predictions using a static LLM with a larger number of
model evaluations than that required by simply prompting for an answer. These methods significantly
improve performance without modifying model weights (Snell et al., 2025; Zhang et al., 2025b),
effectively using the model as a component in an external optimization or inference framework, at
the cost of increased computation.

A well-designed test-time scaling framework should yield monotonic improvements in performance
as compute budgets increase, similar to scaling laws for pretraining (Kaplan et al., 2020; Snell et al.,
2025). Most methods rely on some kind of verification, whether implicit or explicit, incorporated
within a sequential or parallel control flow. In this section, we review the literature on test-time scaling
in LLMs and provide a taxonomy of test-time scaling frameworks based on the verification strategy
and control flow they employ, illustrated in Fig. 2. Building on this, we then introduce our proposed
approach, Recursive Self-Aggregation (RSA) in §3. See §A for a discussion of broader related work.

2.1 VERIFICATION STRATEGY

External verification. Any external optimization procedure requires a mechanism to assess the
quality of proposed solutions. In domains such as code or math, evaluation can often be performed
exactly using external tools (e.g., compilation and execution (Gao et al., 2023b)). When such verifiers
are unavailable, inference-time feedback is instead obtained via learned reward models, trained on
preference data or correctness signals derived from reasoning chains (Cobbe et al., 2021; Ouyang
et al., 2022; Snell et al., 2025). This verifier feedback, exact or learned, makes it possible to improve
solution quality as more compute is allocated: a simple strategy is Best-of-N (Gao et al., 2023a),
where N candidates are generated and the highest-reward solution is selected.

Self-verification. LLMs exhibit a generation-verification gap: they are more reliable at judging
correctness of solutions than producing them (Li et al., 2024). This property can be exploited to
enable test-time scaling by using the LLM as a verifier of its own outputs (e.g., Madaan et al., 2023;
Weng et al., 2023). The LLM can also be further fine-tuned to enhance its verification ability (Zhang
et al., 2025a), but we regard this as a form of external verification since it requires learning a verifier.

Implicit verification. Some methods bypass explicit verification by relying on the LLM to generate
improved solutions, effectively performing verification of solutions without scoring them. For
example, majority voting (Wang et al., 2023) works on the assumption of self-consistency: that the
model produces correct answers more consistently than incorrect ones. Similarly, frameworks for
self-refinement (e.g., Madaan et al., 2023) iteratively refine a reasoning chain without being explicitly
prompted for verification. RSA falls within this category: rather than explicitly verifying each
solution, the model implicitly checks intermediate steps across multiple reasoning chains, allowing it
to correct errors and generate improved solutions.

2.2 REASONING CONTROL FLOW

Parallel scaling. These strategies generate multiple independent reasoning chains in parallel and
then combine them to yield the final answer. Typical procedures for combination include majority

Preprint.

1 Question l Aggregation Prompt
v 9 n
You are given a problem and several
(t (t) t
—))

> candidate solutions. Some candidates
may be incorrect or contain errors.
Aggregate the useful ideas and
produce a single, high-quality solution.
Reasoning carefully; if candidates
disagree, choose the correct path. If
all are incorrect, then attempt a

> different strategy.

End with the final result in <format>.
Problem: <problem>

Candidate solutions (may contain

> mistakes):

p -meemene SolUtion 1 eeeeeeeeee

> <solution 1>

——0— 0 N] Solution 2 ----------

> <solution 2>

z

]

P
T

LLM
LLM

(t+1)
-/
----=--=- Solution K ----------

Population P; Aggregation Sets S; Population P <solution K>

Figure 3: RSA generates a population of N solutions for a given prompt and recursively updates
them over T steps. Each update step subsamples K distinct solutions from the current population and
generates an improved solution with the aggregation prompt. See §B for algorithm pseudo-code.

voting, Best-of-N selection or single-step aggregation of the sampled proposals (Wang et al., 2023;
Snell et al., 2025; Li et al., 2025). These strategies rely on the inherent diversity in sampling from
the LLM, allowing parallel proposals to efficiently explore the search space and allow optimal GPU
memory utilization. These algorithms embody the philosophy of breadth-first thinking.

Sequential scaling. Purely parallel scaling sacrifices the ability to think deeply, which is often
crucial for multi-step reasoning tasks that cannot be solved efficiently through guess-and-check.
Sequential scaling instead increases the number of iterative model evaluations to produce higher-
quality solutions, for example, by inducing a model to correct errors in its reasoning (Muennighoff
et al., 2025) or simply increasing the number of latent reasoning tokens it can generate. While
these strategies generally require more computation time than parallel ones (given sufficient memory
budgets), they are well suited to complex reasoning problems requiring depth-first thinking. However,
the lack of branching in such methods limits their ability to explore alternative continuations of
promising solution paths, making the model prone to persisting in an unproductive reasoning chain.
Sequential scaling also leaves excess GPU memory underutilized.

Hybrid scaling. Sequential and parallel scaling strategies can be combined in hybrid frameworks
that draw on the strengths of both paradigms. These methods make efficient use of GPU memory
by evaluating many candidate solutions in parallel, while also incorporating sequential depth to
iteratively refine and improve the batch of solutions. One strong class of hybrid methods uses LLMs
as components within a genetic algorithm loop (e.g., Novikov et al., 2025; Lee et al., 2025; Meyerson
et al., 2024), all using external verification to score candidates. Another example of hybrid test-time
scaling is Mixture-of-Agents (Wang et al., 2024), where an ensemble of LLMs generates improved
proposals that are aggregated by a strong model into the seed solution for the next iteration. Our
method, RSA, is also a hybrid scaling algorithm: like Mixture-of-Agents, it relies on recursive
aggregation, but it further maintains a population of candidate solutions larger than the aggregation
batch size, similar to evolutionary algorithms, while only using a single LLM. By aggregating random
subsets of this population, RSA preserves diversity in the candidate pool, which is critical when all
proposals and aggregations are produced by the same model (as studied in §5.3 and §C).

3 EVOLVING THOUGHTS USING RECURSIVE SELF-AGGREGATION

We present Recursive Self-Aggregation (RSA), a hybrid test-time scaling procedure designed to
improve the model’s performance without complex scaffolding or using external verifiers. It frames
reasoning as a form of evolutionary process where candidate reasoning chains are iteratively refined
through self-aggregation, inspired by the crossover and mutation steps in genetic algorithms. RSA
is simple to implement and leads to substantial improvements in reasoning abilities across different
models and tasks, when compared to pure sequential or parallel scaling (§5). Fig. 3 illustrates the
core components of RSA, which we describe below. The algorithm is also written in §B.

Given a query x and a pretrained LLM py,_,, RSA maintains a population of N candidate solutions
% at each step . The model is provided with the question and a subset of K solutions from this
population, and prompted to produce an improved population of solutions ;1. The procedure is
described in detail below:

Preprint.

1. Population of trajectories. At any given step #, RSA maintains a population of N independent
candidate solutions P; := {Tl(t), .. .T](Vt) }. The initial population P, is generated by sampling N
responses for query x using the LLM pg,_:

D~ poa 10, Pr={zY, Y (1)

2. Subsampling. We form N aggregation sets of K candidates, where each set is sampled uniformly
without replacement from the population:

S =580, sy, sY e, s =K.)

3. Aggregation. Each set S i(t) and the query x is formatted using an aggregation prompt directing

the LLM py,, to generate a refined response Tl.(Hl), forming a new population of candidates P :

£+ ~po(-| Sl.(’),x), Py = {Tl(t+l),”.’7_(t+l)}. 3)

14

RSA recursively updates the population #; using (2) and (3) for¢ = 1,...,T — 1. This sequen-
tial loop is expected to allow errors and inconsistencies to be gradually pruned away during
aggregation, while preserving favorable reasoning patterns. Consequently, we expect overall
diversity within the population to generally decrease as ¢ increases, accompanied by a monotonic
improvement in success rate (See §C).

4. Termination. Given the final population of candidate solutions #r, the solution is obtained
either by randomly sampling from this population or by majority voting. We use uniform random
sampling in all our experiments, to evaluate our method without any special selection mechanism.

Note that the intermediate trajectories Tl.(') are not required to terminate with complete answers; even

partial reasoning chains can provide valuable signal during aggregation. Additionally, the choice of K
defines the number of alternative responses to consider for aggregation, with K = 1 being equivalent
to sequential self-refinement (Madaan et al., 2023). In §5.3, we show that even setting K = 2 leads
to significant improvements over self-refinement, highlighting the importance of combining diverse
solutions for improving reasoning performance. See §E for an illustrative example of aggregation.

An important consideration is that self-aggregation can lead to loss of diversity due to excessive
reuse of reasoning patterns that occur in multiple trajectories in the population. Maintaining a large
population size N relative to the aggregation size K helps ensure sufficient diversity for recombination.
However, a very large N relative to K can lead to slow convergence of the population as a whole,
since high-quality reasoning patterns will require more iterations to dominate the population. We
study these tradeoffs in §5.3. The aggregation prompts we use are provided in §F.

4 TRAINING AGGREGATORS WITH REINFORCEMENT LEARNING

In addition to the test-time strategies discussed thus far, a model’s reasoning ability can be improved
by post-training it with reinforcement learning (RL) (Jaech et al., 2024; Guo et al., 2025). Standard
RL post-training encourages a model to produce correct solutions, conditioned on the query (Trung
et al., 2024; Lambert et al., 2025). While this improves the model’s ability to directly generate correct
solutions, it does not explicitly teach the model how to aggregate multiple candidate solutions. As we
show in §5.4, this mismatch between the training objective and the test-time strategy can result in
worse performance compared to the base (reference) model when using RSA.

To better align training and inference, we formulate the task of aggregation as an RL problem.
The reference model pg, . generates a set of candidate reasoning chains given a problem. Next,
the model is trained to produce a single correct reasoning chain given the problem and the set of
candidate reasoning chains. To achieve this in practice, we create an aggregation-aware training
dataset consisting of two types of prompts: (1) Standard prompts, containing only the problem, to
train the model to propose good initial candidate reasoning chains; and (2) aggregation prompts,
which include the problem along with K candidate solutions from the reference model, formatted
with the same aggregation prompt used for RSA; see §F.

Consider problem-solution pairs sampled from some dataset (x,y) ~ D, and candidate solutions 7
generated by the model conditioned on the problems. Training with the standard prompts described
above corresponds to the standard RL training of LLMs that optimizes the following objective:

Max By)0 [Be-po (1 (1191 = BKL (po(- 1% [o (- [9)] 4)

Preprint.

AIME-25 Reasoning Gym Cognition + ARC LiveCodeBench-vé
1194 +224 8.2 +5.6
| +321 4298 4272 60 456 +9.7 75 B +7.1
s 1.6 +
% 50 0] * 50
“ 25 20 25
0 0-
Nemotron Qwen3 Qwen3 Qwen3 GPT-OSS DeepSeck o3-mini GPT-OSS Nemotron Qwen3 Qwen3 DeepSeek 03-mini Qwen3 Qwen3 GPT-OSS o3-mini
Nano-v2 Instruct Instruct Thinking Medium -R1 (high) Medium Nano-v2 Instruct Instruct -R1 (high) Instruct Instruct Medium (high)
98) 48) (30B) (4B) (20B) 08) (98) @8) (30B) “8) (30B) (20B)
HMMT-25 Reasoning Gym Games SuperGPQA
+350 25 +15 +206 6 67
" i59 *251 0 +126 +14.0 +5.5
§ o] +204 - 501 .88 40
< 25 20
0 0
Qwen3 Nemotron Qwen3 Qwen3 GPT-OSS DeepSeek o3-mini Nemotron GPT-OSS Qwen3 Qwen3 DeepSeek 03-mini Qwen3 Qwen3
Instruct Nano-v2 Instruct Thinking Medium -R1 (high) Nano-v2 Medium Instruct Instruct -R1 (high) Instruct Instruct
(4B) (98) (30B) (4B) (20B) (9B) (20B) (4B) (30B) (4B) (30B)
DeepSeck-R1 W o3-mini (high) Base Base + RSA

Figure 4: RSA significantly improves Pass@ 1 across math, code, general reasoning, and knowl-
edge recall tasks. We observe consistent gains across diverse model families, including standard
instruction-tuned models and long CoT “thinking” models. Further details provided in §D.2.

Table 1: We report Pass@1 scores for RSA and other test-time scaling baselines. RSA results
obtained with aggregation size K = 4, population size N = 16, run for T = 10 steps. Majority-voting
and rejection-sampling are budget-matched with RSA. Results are averaged over 4 seeds for all tasks
except SuperGPQA, where we use 1 seed. Further details in §D.

Math reasoning Code gen. General reasoning / planning Knowledge recall
Method | Task — AIME-25 HMMT-25 LiveCodeBench-v6 RG Games RG Cognition+ARC SuperGPQA
Reference 4391 27.17 49.63 53.88 42.31 41.85
Rejection sampling 48.23 32.76 50.90 56.41 45.11 46.18
Self-refinement 53.33 39.17 51.40 65.50 49.17 435
Majority voting 68.33 35.00 - 65.15 46.07 48.2
Self-aggregation (RSA, 7' =1) 56.51+306 36.15+1.26 51.94+0.15 65.21+0.98 48.63+0.81 4591
RSA 7318220 47.55:1.00 56.72=0.65 68.98=1.10 51.96:2.24 47.39

where S controls the optional KL regularization with the reference policy pg,,. For the aggregation
prompts, we additionally sample K candidates from pg_, to construct the aggregation set Sp, resulting
in the following objective:

MAX B(x)~ D50~ oy (1% [Erpotxso) [F(T.9)] = BKL (pa (- | X,80) | pos (- | %, 50))] . (5)

This objective can be optimized using any off-the-shelf policy gradient algorithm, such as
PPO (Ouyang et al., 2022), GRPO (Shao et al., 2024), or RLOO (Ahmadian et al., 2024), initializing
6 with a copy of the base model parameters 6.t or using a parameter-efficient fine-tuning technique.
We use RLOO in all our experiments (§5.4) for its simplicity and good empirical performance.

5 EXPERIMENTS

We first demonstrate the effectiveness of RSA as a test-time scaling strategy in §5.1 and §5.2 through
comprehensive evaluations on math, code generation, general reasoning, and knowledge recall
benchmarks. In §5.3, we analyze how RSA’s three key parameters — the aggregation set size K, the
population size N, and the number of sequential steps T — contribute to its success. Finally, in §5.4,
we show that aggregation-aware RL training can further enhance RSA’s performance.

Tasks. We evaluate RSA across four benchmark categories, providing further details in §D.1:

* Math. We use AIME-25 and HMMT-25 from MathArena (Balunovi¢ et al., 2025), each containing
30 challenging competition-level math problems.

* General reasoning. We construct two datasets with 100 problems each from Reasoning Gym
(Stojanovski et al., 2025), using tasks from the games category, and cognition + ARC categories.

* Code generation. We use LiveCodeBench-v6 (Jain et al., 2024) which contains 1055 problems.

* Knowledge-based reasoning. We use SuperGPQA (M-A-P Team et al., 2025), a graduate-level
knowledge-based reasoning benchmark, to test effectiveness of RSA on tasks requiring factual recall.
Given the large dataset size, we evaluate on 1000 randomly chosen multiple-choice questions.

5.1 RSA OUTPERFORMS OTHER TEST-TIME SCALING METHODS

We benchmark RSA against sequential and parallel test-time scaling methods with
Qwen3-4B-Instruct-2507 as the base model. To ensure consistency across tasks, we fix the pop-
ulation size to N = 16, the aggregation set size to K = 4, and the number of recursive updates to

Preprint.

HMMT-25
0.50 -

Reasoning Gym Games

RSA consistently outperforms
the reference model, improving
monotonically with additional
refinement steps. Larger
aggregation sizes K further
amplify these gains.

S £ ——— Qwen3-4B-Instruct
0.25 Aggregation size K
2 4 6 8 10 — 1 2 3 o— 4 2 4 6 8 10
AIME-25 LiveCodeBench-vé

Qwen3-4B-Instruct

2 4

8 10 2 4 8 10 2 4

6
RSA Step

Figure 5: Pass@1 vs. RSA steps, for fixed population size N = 16, using Qwen3-4B-Instruct-2507.
Error bands indicate standard deviation over 4 seeds. Larger K generally improves performance.

6 6
RSA Step RSA Step

T = 10. Results are averaged over 4 seeds, except for SuperGPQA where we report a single seed
due to computational constraints. For fairness, we restrict comparisons to methods that require no
additional training or external verifiers. Further experimental details are provided in §D.3.

Sequential baselines. We consider T-step self-refinement (Madaan et al., 2023), which corresponds
to RSA with K = 1 and N = 1, which we run for 7 = 10 steps.

Parallel baselines. We evaluate majority voting (Wang et al., 2023) and rejection sampling with
self-verification (Weng et al., 2023), budget-matched with RSA by using N X T generations. We also
include single-step self-aggregation (Li et al., 2025), equivalent to RSA with K =4 and T = 1.

Table 1 reports Pass@1 results across all benchmarks, showing that RSA consistently outperforms
both sequential and parallel baselines. Against self-refinement, RSA achieves higher performance,
demonstrating that aggregating multiple solutions provides clear advantages over refining a single
one. Notably, RSA with T = 10 outperforms its single-step variant (T = 1), highlighting the benefits
of recursive aggregation. When compared to parallel methods, RSA achieves superior results on all
tasks except SuperGPQA, where majority voting is particularly effective due to the multiple-choice
answer format. We omit majority voting on LiveCodeBench-v6 since code solutions rarely coincide
exactly, and refer to §D for further details.

5.2 RSA YIELDS CONSISTENT GAINS ACROSS DIFFERENT MODELS

We apply RSA to a diverse set of instruction-tuned models spanning a wide range of pa-
rameter counts, architectures, and reasoning abilities, including long chain-of-thought “think-
ing” models, sparse Mixture-of-Experts (MoE) architectures, and hybrid state-space mod-
els. Specifically, among instruction-tuned models, we consider Qwen3-4B-Instruct-2507 and
Qwen3-30B-A3B-Instruct-2507 (Yang et al., 2025), while among long chain-of-thought thinking
models, we include Qwen3-4B-Thinking-2507, gpt-oss-20b (medium) (OpenAl et al., 2025),
and NVIDIA-Nemotron-Nano-9B-v2 (NVIDIA, 2025). Table 2 provides a detailed overview of the
characteristics of the models considered in this work.

Fig. 4 shows that RSA leads to substantial improvements on all tasks across a wide range of models.
Remarkably, applying RSA to Qwen3-4B-Instruct-2507, a substantially weaker model, matches
and in some cases outperforms strong reasoning models like DeepSeek-R1 and 03-mini (high)
without RSA. Taken together, these results establish RSA as a strong and general test-time scaling
strategy for a wide variety of tasks.

5.3 EFFECT OF SCALING RSA HYPERPARAMETERS
We perform experiments using Qwen3-4B-Instruct-2507 to answer the following questions:

* How does the performance of RSA vary with parallel and sequential scaling parameters?
* What underlying mechanisms explain the performance gains of RSA?
* How to select the parameters effectively under a compute budget?

Preprint.

AIME-25 HMMT-25 LiveCodeBench-vé

0.3

o
N

o
Pass@N - Pass@1

Pass@N - Pass@1

o
o

——a 0.0 e
8 10 2 4 6 8 10
RSA Step

Population size N

—— 4 8 —4— 16 —&— 32

6
RSA Step

Figure 7: Pass@N (top row) and Pass@N — Pass@1 (bottom row) across RSA steps for different
values of N. Larger N results in higher Pass@N score, but requires more steps to mix, delaying the
convergence of Pass@1 to Pass@N. All results with fixed K = 4.

Monotonic improvement with sequential depth 7. Fig. 5 plots the Pass@1 scores over self-
aggregation steps for different aggregation set sizes K. Performance improves monotonically on
nearly all tasks, with the only significant downward trend on Reasoning Gym Cognition + ARC after
five steps. Overall, these results demonstrate that RSA scales effectively with increasing depth.

Increasing aggregation size K improves performance. Fig. 5 shows that increasing the aggrega-
tion size K improves performance. The largest gain is observed when moving from K = 1to K = 2,
highlighting that aggregating over multiple reasoning chains provides substantial improvement over
single-trajectory refinement. We observe diminishing returns beyond K = 3 on most tasks, possibly
because the model cannot effectively attend to very long contexts.

Effect of increasing population size N. Next, we study the impact of total population size N, i.e.,
the number of unique candidates available for aggregation at each step. In Fig. 6, we plot the final
Pass@1 scores for different tasks using a fixed aggregation size of K = 4 and T = 10 sequential
steps, while varying N € {4,8,16,32}. We observe that increasing N always initially improves
performance, but scaling N to very large values leads to a small performance drop on AIME-25 and
Reasoning Gym Games. We investigate the role of population size further in the following section,
where it emerges as the key parameter controlling the asymptotic performance of RSA.

Pass@N as a predictor of asymptotic performance. The
Pass@N score for a population of N solutions is equal to 1 if at
least one final answer out of the N is correct. The toprow of Fig. 7 §° | _o —e———
shows the average Pass@N score of the population across itera- & os

tions of RSA for different values of N. For the math tasks (AIME- , //'_/—.
25, HMMT-25), Pass@N remains relatively stable, whereas for

0.7 pa—

4 8 16 32

LiveCodeBench-v6 it decreases by 6-8%. As expected, larger N Population size N
yields a higher baseline Pass@N score. —e— LiveCodeBench-v6 —e— RG Games

) —o— AIME-25 RG Cognition
We find that the gap between Pass@N and Pass@1 is a useful = —e— nvmros +ARC

predictor of the ‘aggregability’ of a set of solutions. The bottom Figure 6: Pass@1 at T = 10 over
row of Fig. 7 shows this gap over iterations. As the number of RSA
iterations grows, Pass@1 converges to Pass@ N, which acts as an
upper bound on the performance. The Pass@N — Pass@1 gap consistently drops faster for smaller N
with fixed aggregation set size K. Intuitively, RSA preserves good reasoning patterns in the population,
and high-quality reasoning chains can mix within the population in fewer aggregation iterations if the
population size is small. Therefore, a larger population size N enables better asymptotic performance,
but requires either more sequential iterations 7" or faster mixing via larger aggregation size K. See §C
for a population diversity analysis over RSA steps, which further validates these findings.

population size N (fixed K = 4).

Preprint.

HMMT-25 Reasoning Gym Games
Aggregation-aware RL training 0.70
050 leads to substantial gains with
s RSA. Standard RL, on the other | g %
Dﬁi 0.40 hand, hurts RSA performance. nﬁi 00

0.30 ' 0.55
4 —e— Base + RSA —#— Standard RL + RSA

2 4 6 8 10 Aggregation-aware RL + RSA 2 4 6 8 10

AIME-25 LiveCodeBench-vé Reasoning Gym Cognition + ARC
055

o
0.50 /

0.45

Pass@1
Pass@1

2 4

8 10 2 4 8 10 2 4 8 10

RSA Stéep RSA Stéep RSA Stéep
Figure 8: Pass@1 across RSA steps for the base, standard RL, and aggregation-aware RL policies
with Qwen3-4B-Instruct-2507. Standard RL training generally hurts performance when using
RSA, whereas aggregation-aware training leads to marked improvement on most tasks.

Tuning RSA under compute budgets. Our results indicate that jointly increasing N, K, and T
improves RSA performance. In practice, the key question is how to scale them relative to one another
given a limited compute budget. Based on the above analysis we note that:

» Population size N controls the asymptotic performance.
 Larger aggregation set size K for a fixed N leads to faster mixing of high quality chains (for K > 1).
* Longer self-aggregation depth 7 monotonically improves performance.

When a higher number of sequential reasoning steps T are feasible, it allows for a smaller K provided
N is large. Conversely, when T is limited due to time constraints and increasing K is impractical
(e.g., due to context length constraints), N should also be reduced; a large population that fails to mix
effectively is less useful than a smaller batch that evolves rapidly together. We expect these findings
to generalize to other model families.

5.4 RSA IMPROVES WITH AGGREGATION-AWARE RL
We next analyze the impact of the aggregation-aware RL training procedure described in §4.

Setup. We use Qwen3-4B-Instruct-2507 as the reference model. We construct a general reason-
ing dataset by combining 16,000 randomly sampled math problems from DeepScaleR (Luo et al.,
2025), and 2048 problems each from six Reasoning Gym tasks where the reference model performs
poorly (tower_of_hanoi, sokoban, knight_swap, rush_hour, arc_1d, and sentence_reordering).
For each query in the dataset, we generate four candidate solutions using the reference model, which
are then used to form aggregation prompts as shown in Fig. 3.

We train an aggregation-aware model on this augmented dataset by jointly optimizing (4) for the
standard prompts and (5) for the aggregation prompts. As a baseline, we also train a model on the
original dataset with only standard prompts by optimizing (4). The model trained using standard RL
is only trained to generate solutions directly and is not optimized to aggregate reasoning chains. Both
models are trained for 300 steps using RLOO (Ahmadian et al., 2024). (Further details in §D.4.)
For evaluation, we run RSA for 7 = 10 steps with the reference, standard RL post-trained, and
aggregation-aware RL post-trained models on AIME-25, HMMT-25, LiveCodeBench-v6, and the
Reasoning Gym Games and Cognition + ARC test sets from §5. We ensure no data contamination
between the training and test sets. We fix the aggregation size K = 4 and population size N = 16.

Results. Fig. 8 shows that in four out of five cases, RSA with the standard RL fine-tuned model
underperforms RSA with the reference model, validating our hypothesis that distribution shifts
incurred due to test-time scaling can lead to performance degradation after RL. The aggregation-
aware policy, on the other hand, always outperforms standard RL and significantly outperforms the
reference in four out of five tasks, with AIME-25 being the only outlier. Interestingly, we see massive
gains on LiveCodeBench, despite the fact that our training dataset completely lacks any coding
problems, which might indicate that the aggregation skills exhibit strong out of domain transferability.
Overall, these experiments clearly demonstrate the benefits of aggregation-aware RL. Considering

Preprint.

the implementation simplicity and the resulting robustness gains to RSA (or even to single-step
self-aggregation), we strongly encourage its adoption for post-training.

6 CONCLUSION AND FUTURE WORK

We introduce Recursive Self-Aggregation (RSA), a hybrid test-time scaling framework that treats
reasoning as an evolutionary process. By recursively aggregating reasoning chains, RSA enables
models to cross-reference and recombine information across multiple candidates, while still retaining
the depth of sequential refinement. This allows RSA to generate solutions that consistently outperform
single-trajectory refinement and purely parallel scaling strategies. We further show that RL fine-tuning
the LLM to perform aggregation amplifies RSA’s benefits, yielding superior performance.

Future work. In future work, RSA can be composed with other test-time scaling methods to further
improve performance, for example, by using self-verification to filter low-quality candidates from
the population, thus introducing an explicit fitness function to the evolutionary algorithm. Another
promising idea is to use multi-step reinforcement learning to train the policy for the end-to-end RSA
procedure, moving beyond the greedy single-step aggregation explored in this work.

ACKNOWLEDGMENTS
The authors thank Emiliano Penaloza for helpful comments.

The research was enabled in part by computational resources provided by the Digital Research
Alliance of Canada (https://alliancecan.ca), Mila (https://mila.quebec), NVIDIA, and
the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-ACO02-
05CH11231 using NERSC award NERSC DDR-ERCAP0034652.

YB acknowledges funding from National Sciences and Engineering Council of Canada (NSERC)
and the Canadian Institute for Advanced Research (CIFAR). GL acknowledges support from NSERC
Discovery Grant RGPIN-2018-04821, the Canada Research Chair in Neural Computations and
Interfacing, and a Canada-CIFAR AI Chair. GB acknowledges funding from NSERC and CIFAR.
NM acknowledges support from the CIFAR Learning in Machines and Brains program. VS was
supported by a UNIQUE scholarship. MJ is supported by a FRQNT Doctoral Fellowship (https:
//doi.org/10.69777/366694). SM acknowledges funding from FRQNT Doctoral Fellowship
(https://doi.org/10.69777/372208)

Prepared by LLNL under Contract DE-AC52-07NA27344 and supported by the LLNL-LDRD
Program under Project No. 24-ERD-058. This manuscript has been authored by Lawrence Livermore
National Security, LLC under Contract No. DE-AC52-07NA27344 with the U.S. Department of
Energy. The United States Government retains, and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.

ETHICS STATEMENT

Improving test-time scaling performance of LLMs can enhance their usefulness across domains
but also carries risks associated with misuse and unintended generalization. Careful evaluation and
responsible deployment are essential as these methods are applied to more capable models.

REPRODUCIBILITY STATEMENT

We provide all the details to reproduce our results in §5 and §D. We also provide the code for our
test-time scaling experiments at https://github.com/HyperPotatoNeo/RSA.

LLM USE

LLMs were used to assist paper editing and to write the code for experiments.

10

https://alliancecan.ca
https://mila.quebec
https://doi.org/10.69777/366694
https://doi.org/10.69777/366694
https://doi.org/10.69777/372208
https://github.com/HyperPotatoNeo/RSA

Preprint.

REFERENCES

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, Christopher Potts, Koushik
Sen, Alexandros G. Dimakis, Ton Stoica, Dan Klein, Matei Zaharia, and Omar Khattab. Gepa:
Reflective prompt evolution can outperform reinforcement learning, 2025. URL https://arxiv.
org/abs/2507.19457.

Arash Ahrpadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in 1lms, 2024. URL https://arxiv.org/abs/2402.14740.

Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovi¢, and Martin Vechev. Matharena:
Evaluating llms on uncontaminated math competitions, February 2025. URL https://matharen
a.ai/.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI conference
on artificial intelligence, volume 38, pp. 17682—-17690, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. In Forty-second International Conference on
Machine Learning, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 10835-10866. PMLR, 23-29 Jul
2023a. URL https://proceedings.mlr.press/v202/gao23h.html.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023b.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=tEYskw
1VY2.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1v1AC.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei
Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian
Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen,
Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng

11

https://arxiv.org/abs/2507.19457
https://arxiv.org/abs/2507.19457
https://arxiv.org/abs/2402.14740
https://matharena.ai/
https://matharena.ai/
https://proceedings.mlr.press/v202/gao23h.html
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

Preprint.

Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1 incentivizes reasoning in 1lms through reinforcement learning. Nature, 645
(8081):633-638, 2025.

Erik Hemberg, Stephen Moskal, and Una-May O’Reilly. Evolving code with a large language model,
2024. URL https://arxiv.org/abs/2401.07102.

Yuichi Inoue, Kou Misaki, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
deeper? scaling llm inference-time compute with adaptive branching tree search. arXiv preprint
arXiv:2503.04412, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.07974.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christopher
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi.
Tulu 3: Pushing frontiers in open language model post-training. In Second Conference on Language
Modeling, 2025. URL https://openreview.net/forum?id=i1uGbfHHpH.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans, and
Xinyun Chen. Evolving deeper llm thinking, 2025. URL https://arxiv.org/abs/2501.09891.

Xiang Lisa Li, Vaishnavi Shrivastava, Siyan Li, Tatsunori Hashimoto, and Percy Liang. Benchmarking
and improving generator-validator consistency of language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=ph
BS6YpTzC.

Zichong Li, Xinyu Feng, Yuheng Cai, Zixuan Zhang, Tianyi Liu, Chen Liang, Weizhu Chen, Haoyu
Wang, and Tuo Zhao. Llms can generate a better answer by aggregating their own responses. arXiv
preprint arXiv:2503.04104, 2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-preview
with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/DeepScaleR-Sur
passing-01-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303
013a4e2, 2025. Notion Blog.

12

https://arxiv.org/abs/2401.07102
https://arxiv.org/abs/2403.07974
https://openreview.net/forum?id=i1uGbfHHpH
https://arxiv.org/abs/2501.09891
https://openreview.net/forum?id=phBS6YpTzC
https://openreview.net/forum?id=phBS6YpTzC
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

Preprint.

M-A-P Team, Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao
Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shian Jia, Sichao
Jiang, Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, Dehua Ma, Yuansheng Ni,
Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tianshun Xing, Ming Xu, Zhenzhu Yang,
Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan, Zili
Wang, Chenging Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin Yuan,
Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang, Yue
Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng Liu,
Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi Wang,
Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou, Jiaheng
Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling llm evaluation across 285
graduate disciplines, 2025. URL https://arxiv.org/abs/2502.14739.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=S37h0erQLB.

Elliot Meyerson, Mark J. Nelson, Herbie Bradley, Adam Gaier, Arash Moradi Karkaj, Amy K.
Hoover, and Joel Lehman. Language model crossover: Variation through few-shot prompting.
ACM Trans. Evol. Learn. Optim., 4(4):27:1-27:40, December 2024. URL https://doi.org/1@
.1145/3694791.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Diver-
sity of thought improves reasoning abilities of llms. arXiv preprint arXiv:2310.07088, 2023.

Alexander Novikov, Ngan Vii, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
volve: A coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131,
2025.

NVIDIA. Nvidia nemotron nano 2: An accurate and efficient hybrid mamba-transformer reasoning
model, 2025. URL https://arxiv.org/abs/2508.14444.,

OpenAl, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin
Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler
Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen,
Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives,
Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher,
Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar,
Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman,
Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park
Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily,
Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath,
Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles,
Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano,
Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry
Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu
Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max
Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey,
Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin
Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney,
Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting

13

https://arxiv.org/abs/2502.14739
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/10.1145/3694791
https://doi.org/10.1145/3694791
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2508.14444

Preprint.

Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b & gpt-0ss-20b
model card, 2025. URL https://arxiv.org/abs/2508.10925.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/forum
?1d=4FWAwZtd2n.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Kopf. Reasoning gym: Reasoning environments for reinforcement learning with
verifiable rewards, 2025. URL https://arxiv.org/abs/2505.24760.

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with 1llms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7601-7614, 2024.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Qibin Wang, Pu Zhao, Shaohan Huang, Fangkai Yang, Lu Wang, Furu Wei, Qingwei Lin, Saravan
Rajmohan, and Dongmei Zhang. Learning to refine: Self-refinement of parallel reasoning in llms,
2025. URL https://arxiv.org/abs/2509.00084.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PLTNIMMrw.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallstrom, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin
Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-
tional encoder for fast, memory efficient, and long context finetuning and inference, 2024. URL
https://arxiv.org/abs/2412.13663.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification. In The 2023 Conference
on Empirical Methods in Natural Language Processing, 2023.

14

https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2505.24760
https://arxiv.org/abs/2509.00084
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2412.13663

Preprint.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://openrevi
ew.net/forum?id=5XcTecx01h.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. In The Thirteenth International
Conference on Learning Representations, 2025a.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, Irwin King, Xue Liu, and Chen Ma. A survey on
test-time scaling in large language models: What, how, where, and how well?, 2025b. URL
https://arxiv.org/abs/2503.24235.

Wenting Zhao, Pranjal Aggarwal, Swarnadeep Saha, Asli Celikyilmaz, Jason Weston, and Ilia
Kulikov. The majority is not always right: Rl training for solution aggregation. arXiv preprint
arXiv:2509.06870, 2025.

15

https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2503.24235

Preprint.

A ADDITIONAL RELATED WORK

Chain-of-thought aggregation. Several recent papers have explored self-aggregation as a parallel
scaling strategy. Li et al. (2025) study simple single-step aggregation, while Wang et al. (2025)
enhance aggregation ability through supervised fine-tuning (SFT), which requires access to a stronger
teacher LLM. Concurrent to our work, Zhao et al. (2025) trained RL policies for single-step aggrega-
tion. Our work conducts more extensive experiments across a broader suite of tasks with ablations,
and further motivate aggregation-aware RL as a means to improve the performance of test-time
recursive aggregation as an additional contribution. Naik et al. (2023) does not use self-aggregation,
instead including an “approach” in the prompt to generate multiple diverse solutions, from which
an answer is selected using majority voting. The algorithm could easily be modified to use self-
aggregation as the combination strategy instead. None of these works explored the sequential scaling
and evolutionary components introduced in our work. Wang et al. (2024) is closely related to our
approach, and uses an ensemble of LLMs to generate proposals that are jointly aggregated by a
stronger model in an iterative loop. In contrast, RSA uses a single LLM and mixes the population
by aggregating random subsets at each step while maintaining a fixed population size greater than
the aggregation size to maintain population diversity, which we identify as critical factor (See §5.3
and §C for further analysis).

Evolutionary methods. Another line of work closely related to RSA is using LLMs within
evolutionary algorithms. Yang et al. (2023) propose using LLMs as proposers and mutators within
an evolutionary optimization loop. They assume access to an external fitness function to evaluate
the solutions. Romera-Paredes et al. (2024) propose FunSearch which builds upon a similar idea
using LLMs to modify and propose new python functions given a scoring function. Similar to our
aggregation-aware RL approach, EvoTune (Surina et al., 2025) trains the LLM within an evolutionary
process with RL to improve the LLM in the context of program synthesis.

Other related works. Several hybrid scaling strategies build on Tree-of-Thoughts (ToT) (Yao
et al., 2023). (Inoue et al., 2025), expands trees over coherent text units (“thoughts”) and applies
adaptive branching to Monte Carlo Tree Search, with external or self-verification serving as the value
function. Graph-of-Thoughts (GoT) (Besta et al., 2024) generalizes Tree-of-Thoughts by organizing
reasoning units (“thoughts”) into a directed acyclic graph (DAG), allowing nodes to have multiple
parents (through aggregation) in addition to branching. Forest-of-Thought (Bi et al., 2025) expands
multiple ToTs in parallel, and combines their final solutions using majority voting; if no consensus is
found, it uses an LLM to compare the reasoning processes and outcomes of the different trees to give
a final answer. A key weakness of these approaches is their reliance on either external verification
of outcomes or value functions for scoring partial reasoning chains, the latter being a notoriously
difficult problem. They also typically require careful prompting to ensure that the generated chains
consist of meaningful atomic “thoughts”. To date, we are not aware of applications of these methods
to long CoT reasoning models.

16

w

10

11

Preprint.

B RSA ALGORITHM

Algorithm 1: Recursive Self-Aggregation (RSA)
Input: LLM p, with fixed parameters, problem x, population size N, subset size K, steps 7.
Output: Final population Py = {TI(T), cees T(T)}.

// Initialization
|

(T VN ~ po(- %)

P — {Tl(l),...,TI(\,l)}

// Recursively for t=1,...,T-1
fort — 1toT - 1do
// Subsampling
fori — 1to N do

o

Sample {m - ml(tl)< ~ Uniform ({1, ..., N}) indices without replacement

() (t)
OEEE T ()
il m; k

Form aggregation set Sl@ —{r

St — {S(t),,Sg\;)}

// Self-aggregation
fori < 1to N do

| Y~ pa(-187.%)
1(t+1) ,T(t+1)}

7)[+1(—{T 5 e

// Termination
return Pr and optionally sample 7 ~ Uniform(Pr).

C POPULATION DIVERSITY ANALYSIS

Setup. In this experiment, we study how the diversity of the population evolves across RSA steps,
using the AIME-25 dataset as an illustrative example. To quantify this, we require a metric to measure
semantic diversity within a batch of CoTs. We embed the reasoning chains to generate sequence
embeddings with ModernBERT (Warner et al., 2024), a strong Transformer encoder, and use the
average cosine distance between embeddings in the population as a simple diversity metric. While
this is an imperfect metric, it can still reveal interesting trends when plotted over time.

Effect of varying K. The left of Fig. 9 plots the average population diversity across RSA steps
with a fixed population size N = 16 and varying the aggregation size K = 2, 3, 4. For all K, diversity
rises sharply after the first aggregation step (¢ = 2) and then steadily decays. After 10 steps, larger
K yields lower diversity. This aligns with our intuition and previously observed results — larger
aggregation sizes promote faster mixing of high-quality samples, leading to quicker convergence
toward high-reward solutions (Fig. 5). Conversely, smaller K slows mixing, explaining the weaker
performance observed in Fig. 5.

Effect of varying N. The right panel of Fig. 9 shows average population diversity across RSA
steps with fixed aggregation size K = 4 and varying population sizes N = 4, 8, 16. After 10 steps,
diversity is lowest for N = 4 and highest for N = 16, though the relative differences are smaller than
in the previous experiment varying K. Taken together with the earlier result that larger K accelerates
mixing and improves performance for fixed N, these findings support our hypothesis from §5.3 —
scaling up N should be accompanied by increasing K or T, otherwise the batch will fail to mix in
time and the average sample quality will remain poor after T steps.

D EXPERIMENT DETAILS

In this section we provide all experiment details necessary to reproduce our results. We provide code
here.

17

https://github.com/HyperPotatoNeo/RSA

Preprint.

AIME-25, fixed population size N=16 AIME-25, fixed aggregation size K=4
0.025 0.025
K=2 —— N=4
0.020 3 0.020 N=8
2 2
G 0.015 G 0.015
2 2
3 0.010 A 0.010
0.005 0.005
1 2 3 4 5 6 7 8 9 10
RSA Step RSA Step

Figure 9: Left: Diversity over RSA steps with fixed population size N = 16 and varying aggregation
batch K on AIME-25. Larger K accelerates mixing, shown through faster drop in population diversity.
Right: Diversity over RSA steps with fixed K = 4 and varying N on AIME-25. Increasing N
enhances the diversity of reasoning chains, and hence the Pass@ N score, which determines asymptotic
performance. However, very large N relative to K can slow mixing and hinder performance.

D.1 TASK DETAILS

* Math. We evaluate on the complete AIME-25 and HMMT-25 datasets, each consisting of 30
problems. These tasks use a binary reward: 1.0 if the predicted answer is symbolically equivalent
to the ground truth and 0.0 otherwise, evaluated using Math-Verify.

* General reasoning. Reasoning Gym (Stojanovski et al., 2025) consists of a broad suite of tasks
divided into different categories, and difficulty levels. For our evaluations, we construct two datasets
—one from the “Games” category (17 tasks), requiring general reasoning and planning, and the other
by combining the “Cognition” and “ARC” categories (7 + 2 tasks), requiring pattern recognition.
Each of the datasets consists of 100 randomly generated problems, equally split between the tasks
in the categories. We selected these categories as we found them to be the most difficult for our
base models, particularly Qwen3-4B-Instruct-2507 which we use for our ablations. We evaluate
on the “easy” version of the problems, since the “hard” version is significantly more challenging,
with even frontier reasoning models obtaining 0.0 reward on most tasks. The reward function is
task-dependent, and can be found alongside task descriptions in the Reasoning Gym repository.

* Code generation. We evaluate code generation using the complete LiveCodeBench-v6 dataset
(Jain et al., 2024) consisting of 1055 problems. The task uses a binary reward of 1.0 if the generated
Python code passes all provided test cases upon execution, else 0.0.

* Knowledge based reasoning. We use SuperGPQA (M-A-P Team et al., 2025) as our knowledge-
based reasoning benchmark. Although RSA is designed to enhance deep reasoning, we include
this dataset for completeness and still observe substantial gains. SuperGPQA consists of multiple-
choice questions and assigns a binary reward of 1.0 when the selected option matches the ground
truth.

D.2 MODELS USED

We use Qwen3-4B-Instruct-2507 as the core model for all experiments and ablations. This choice
was motivated by its small parameter count, which makes inference and RL fine-tuning tractable,
while still offering strong base reasoning ability. For all models, we fix the response length to values
that avoid frequent truncation and keep this constant across tasks. All model details, including their
characteristics and response lengths, are tabulated in Table 2.

D.3 BASELINE DETAILS

* Rejection sampling. We prompt the model to self-verify N = 160 candidate solutions. We then
compute the mean score over the positively sampled solutions — equivalent in expectation and lower
variance than sampling one of these at random.

* Self-refinement. For T = 10 steps, generated solutions are fed back into the model, which is
prompted to detect errors and refine its reasoning chain.

* Majority voting. We extract the final answers from all N = 160 reasoning chains and group
equivalent ones. The majority group is then selected and compared with the ground truth.

18

https://github.com/huggingface/Math-Verify
https://github.com/open-thought/reasoning-gym

Preprint.

Table 2: List of models used in our experiments. We include Mixture-of-Experts (MoE) (Shazeer
et al., 2017) and state-space model (SSM) architectures (Gu et al., 2022; Gu & Dao, 2024). Our
evaluation spans both non-thinking and thinking models, with appropriately larger response lengths
allocated to the latter.

Model MoE Hybrid-SSM Thinking Response Length
Qwen3-4B-Instruct-2507 X X X 8192
Qwen3-30B-A3B-Instruct-2507 v X X 8192
Qwen3-4B-Thinking-2507 X X v 32768
gpt-o0ss-20b (medium) v X v 16384
NVIDIA-Nemotron-Nano-9B-v2 X v v 16384

» Self-aggregation. Equivalent to RSA with a single step of aggregation, we first generate a batch
of K = 4 solutions and aggregate them with the model to produce the final answer. We stick to
K = 4 for self-aggregation since the context lengths cannot scale beyond this point without model
performance degradation. As a result, this baseline is not “budget-matched” with RSA similar to
the other parallel baselines above, but we note that the ability to grow the effective batch size well
above the context constraints of the model is one of the major advantages of recursive aggregation
over single-step aggregation.

D.4 RL TRAINING SETUP

We use verl (Sheng et al., 2024) as our framework to train the RL policies described in
§5.4. The aggregation-aware dataset is a 50-50 split between standard and aggregation prompts.
To generate the aggregation prompts, we use our standard inference procedure §D.5 with the
Qwen3-4B-Instruct-2507 reference policy to generate K = 4 candidate reasoning chains per
query. All RL training parameters are shared between the standard and aggregation-aware RL training
runs. We use RLOO (Ahmadian et al., 2024) as the training algorithm with the following hyperpa-
rameters; learning rate = le — 6, KL coefficient § = 0.0, batch size = 256, training steps = 300,
response length = 8192, and max prompt length = 33792 to fit the aggregation prompts.

D.5 LLM INFERENCE SETTINGS

For consistency and fairness, we share the same inference settings across all experiments. We use
vLLM (Kwon et al., 2023) for both RSA and all baselines. We keep sampling parameters consistent
across experiments. We set the sampling temperature = 1.0, top_p = 1.0,and min_p = 1.0, all
of which are the default settings.

E QUALITATIVE EXAMPLE

We present a qualitative example below, where we provide Qwen3-4B-Instruct-2507 with four
candidate solutions for the problem: “Compute the sum of the positive divisors (including 1) of 9!
that have units digit 1.”

We highlight reasoning steps in the aggregated solution that are lifted from individual candidates,
including parts that are newly added by the model and were not present in any candidate. We also
provide the relevant parts from the candidate solutions that appear in the aggregated solution.

* Step 1: While all candidate solutions begin by calculating 9!, some of them compute the products

pairwise. The language in the aggregated solution most closely mirrors the first candidate .

» Step 2: Different candidates compute prime factors in slightly different ways. The only solution
that mentions Legendre’s formula explicitly is the second candidate .

* Step 3: All solutions identified that any multiple of 5 cannot have a units digit of 1. However, only
the fourth candidate correctly identified that even numbers also cannot have a units digit of 1,
which is then used in the aggregated solution. This significantly shortens the search space for valid
divisors.

* Step 4: This step had the most diversity among the candidates. The first candidate exhaustively
listed all possible combinations and pooled them into six different cases. While the aggregated
solution considers the same divisors as candidate # 4 (because of correctly identifying it can’t be

19

Preprint.

an even number), it arranges them into a table, which was not done in any individual candidate.
This shows that the aggregated solution can add new information not present in any candidates.

Aggregated Solution

We are asked to compute the sum of the positive divisors of 9! that have a units digit of 1.

Step 1: Compute 9!

91 =90Xx8XTX6Xx5%x4%x3x2x1=2362880

Step 2: Prime Factorization of 9!
Using Legendre’s formula, the prime factorization is:

-2

Exponent of 3: EJ + EJ =3+1=4

Exponent of 2:

9
—|=4+2+1=7
]

Exponent of 5: EJ =1 Exponent of 7: EJ =1

Thus,
91 =2"x3*x5"'x7!

Step 3: Identify Divisors with Units Digit 1
We are to find all positive divisors d of 9! such that d mod 10 = 1.
Note:

¢ Any divisor divisible by 5 must end in 0 or 5. Thus, no divisor divisible by 5 can have
units digit 1.

¢ Any divisor divisible by 2 is even — ends in an even digit (0, 2, 4, 6, 8).
So no even divisor can end in 1.

Therefore, any divisor ending in 1 must be:
¢ Odd — not divisible by 2 or 5
¢ Not divisible by 5

* So must be a product of powers of 3 and 7 only
That is, the divisor must be of the form:
d=3b.7°

where:
0<b<4 (since3*|9), c€{0,1} (since 7' |9).

Step 4: List All Such Divisors with Units Digit 1
We compute all d =32 -7¢ forb =0, ...,4, c € {0, 1}, and check which end in 1.

20

Preprint.

b 3> ¢ d Units Digit
0O 1 0 1 1/
0 1 1 7 77X
1 3 0 3 3X
1 3 1 21 1/
2 9 0 9 9 X
2 9 1 63 3X
3 27 0 27 7X
3 27 1 189 9 X
4 81 0 81 1v
4 81 1 567 77X
Only the following values end in 1:
1, 21, 8l1.
All are divisors of 9!:
1: trivial divisor, 21 = 3 x 7: both powers present, 81 =34 3* | 9!.

Step 5: Compute the Sum

1+21+81=[103]

Final Answer
103

Candidate #1

We are asked to compute the sum of the positive divisors of 9! that have units digit 1.

Step 1: Compute 9!

IMN=9xBXTX6Xx5x4x3x2x1
We can compute it step by step:
* 91 =362880

Candidate #2

We are asked to compute the sum of the positive divisors of 9! that end in the digit 1 (i.e., have
units digit 1).

Step 2: Prime factorization of 9!
We find the prime factorization of 9! using Legendre’s formula:
For a prime p, exponent in n! is:

27

)
k=1

BRCRERSE

Primes <9:2,3,5,7
Exponent of 2:

Exponent of 3:

Preprint.

Exponent of 5:
9
Zl=1
H
Exponent of 7:
PJ 1
7
So,

91 =2"x3*x5"'x7!

Candidate #4

We are asked to compute the sum of the positive divisors of 9! that have units digit 1.

Step 3: List all divisors of 9! that end in 1

Rather than list all divisors (which would be (7+ 1)(4+ 1)(1+1)(1+1) =8x5x2x2 = 160),
we need only the ones ending in 1.

We can generate the divisors in a smart way, or use modular arithmetic to filter.

But since the total number is 160, and many divisors end in 0, 2,4, 5, 6, 8, we can hope that only
afewendin 1.

Let’s consider the last digit of a divisor.

We can iterate through all divisors and check the last digit, but we can also use modular filtering:
We are to find all d | 9! such that d = 1 (mod 10)

Note: If d | 9!, and d = 1 (mod 10), then d is odd (since it ends in 1), and d £ 0 (mod 5),
because any multiple of 5 ends in 0 or 5, and only 5 ends in 5, but 1 is not 5.

So d cannot be divisible by 5.

That’s a key observation!

Key Observation:

* Any divisor of 9! ending in 1 must net be divisible by 5.
* Because: If divisible by 5 — ends in 0 or 5 — canf end in 1.

So, we are only interested in divisors of 9! that are not divisible by 5 and end in 1.

But even among those not divisible by 5, most end in 2, 4, 6, 8 — only some end in 1.

So actual candidate divisors: divisors of % = 3625& = 72576

Since we are excluding all divisors divisible by 5.

So, we now consider only divisors of 27 x 34 (since we remove the 5 factor), and among them,
those ending in 1.

So the possible divisors (that are not divisible by 5) are all numbers of the form:

d=2%x3" where0<a<7,0<b<4

We want those such that d = 1 (mod 10)
Let’s go through all combinations of (a, b), compute d = 2% x 3?, and check if mod 10 = 1

Wait — important point:
e If a > 1, then d is even — last digit is even — cannot be 1.
¢ So only when a = 0 can a divisor d be odd, hence end in 1.

Thus, all divisors ending in 1 must have ¢ = 0.

22

Preprint.

What about 7?

Ah! We forgot about 7!

We initially focused on 2¢ - 3% but we removed 5, but we haven’t included the factor of 7!
Wait — this is a major mistake.

We said “divisors not divisible by 5 — that§ correct.

But divisors can include **7** — gince 7! divides 9!

F RSA PROMPTS

We use a simple prompt template with minor task-appropriate changes, without tuning beyond some
initial adjustments. Although greater gains may be achievable with careful prompt engineering,
we avoided this to prevent skewing results, and instead report performance that can be reasonably
expected from a straightforward implementation of RSA. In fact, we look forward to future work
that applies automated prompt optimization, such as GEPA (Agrawal et al., 2025), to design prompts
tailored to the end-to-end RSA procedure, offering a cheaper alternative to the RL-based approach
discussed at the end of §6. The prompt generation functions for math (AIME-25, HMMT-25), Rea-
soning Gym, and SuperGPQA tasks are given below. The prompt illustrated in Fig. 3 is the essentially
the same prompt without any task-specific formatting. The prompts used for LiveCodeBench are
similar, but contain some additional instructions to condition on the provided starter code.

RSA prompt generation code

1 def aggregate_prompt(query: str, candidate_answers: List[str], task: str) -> str:
2 # Reasoning Gym

3 if task == ’rg’:

4 problem_kind = ’problem’

5 format_hint = ’<answer>...</answer>’

6 # SuperGPQA

7 elif task == ’supergpqga’:

8 problem_kind = 'multiple-choice problem’

9 format_hint = ’\\boxed{}. Only include the correct option letter in \\boxed{}; for example \\

boxed{A}’

10 # Math (AIME-25, HMMT-25)

11 else:

12 problem_kind = 'math problem’

13 format_hint = ’\\boxed{}’

14

15 parts = []

16 # If K=1, we are doing single-trajectory refinement

17 if len(candidate_answers) ==

18 parts.append(

19 f"You are given a {problem_kind} and a candidate solution. "

20 "The candidate may be incomplete or contain errors. "

21 "Refine this trajectory and produce an improved, higher-quality solution. "
22 "If it is entirely wrong, attempt a new strategy. "

23 f"End with the final result in {format_hint}.\n"

24)

25 # If K>1, we are doing multi-trajectory aggregation

26 else:

27 parts.append(

28 f"You are given a {problem_kind} and several candidate solutions. "
29 "Some candidates may be incorrect or contain errors. "

30 "Aggregate the useful ideas and produce a single, high-quality solution. "
31 "Reason carefully; if candidates disagree, choose the correct path. "
32 "If all are incorrect, then attempt a different strategy.”

33 f"End with the final result in {format_hint}.\n"

34)

35

36 parts.append("Problem:\n")

37 # Original query is appended here.

38 # It also contains the formatting instructions.

39 parts.append(query.strip() + "\n")

40

41 # If K=1, we are doing single-trajectory refinement

42 if len(candidate_answers) ==

43 parts.append(”Candidate solution (may contain mistakes):\n")
& J

23

Preprint.

~

44 ans_str = (candidate_answers[@] or "").strip()

45 parts.append(f"---- Candidate ----\n{ans_str}\n")

46 parts.append(

47 f"Now refine the candidate into an improved solution. "

48 "Provide clear reasoning and end with the final answer in {format_hint}.”

49)

50 # If K>1, we are doing multi-trajectory aggregation

51 else:

52 parts.append(”Candidate solutions (may contain mistakes):\n")

53 for i, ans in enumerate(candidate_answers, 1):

54 ans_str = (ans or "").strip()

55 parts.append(f"---- Solution {i} ----\n{ans_str}\n")

56 parts.append(

57 f"Now write a single improved solution. Provide clear reasoning and end with the final answer
in {format_hint}."”

58)

59

60 return "\n".join(parts)

61

62 def build_prompt(query: str, candidate_answers: Optional[List[str]], task: str):

63 # At t=1, candidate_answers is None and we return base query

64 # At t>1, candidate_answers is a list of strings and we return an aggregated prompt

65 if candidate_answers is not None:

66 prompt = aggregate_prompt(query, candidate_answers, task)

67 else:

68 prompt = query

69 return prompt

-

24

	Introduction
	A taxonomy of test-time scaling methods
	Verification strategy
	Reasoning control flow

	Evolving thoughts using recursive self-aggregation
	Training aggregators with reinforcement learning
	Experiments
	RSA outperforms other test-time scaling methods
	RSA yields consistent gains across different models
	Effect of scaling RSA hyperparameters
	RSA improves with aggregation-aware RL

	Conclusion and future work
	Additional related work
	RSA algorithm
	Population diversity analysis
	Experiment details
	Task details
	Models used
	Baseline details
	RL training setup
	LLM inference settings

	Qualitative example
	RSA prompts

